The increasingly common technology designed to save fuel might reduce consumption, but what effect does it have on engine life?
27 March 2017

In urban situations especially, stop-start should be making a real-world difference, but will the durability of engines be affected in the long term?

What is a stop-start engine?

Stop-start is a system installed on most modern cars which cuts a petrol or diesel engine when the car is stationary, in order to reduce fuel consumption and emissions. When the brake is released, or the clutch is engaged when the driver is ready to move again, the engine starts again. 

How does the system work?

The system halts fuel delivery and ignition spark to the engine, with a computer sensing when both the car is stationary, and the brake pedal is depressed, or the car is out of gear. The process happens automatically, but drivers can choose whether the system is active or disabled by pushing their car’s stop-start button; a capital A with an arrow circling clockwise. 

A conventional electric starter motor works by engaging a small pinion gear with a large ‘ring’ gear fitted around the outside of the engine flywheel.

The latest stop-start technology looks much the same but the motors are more powerful, faster acting and more robust. Some are designated ‘TS’ for ‘tandem solenoid’ and designed to cope more smoothly with scenarios where the engine is about to stop and then the driver accelerates again.

Read more: How to buy a used car - expert top tips

Such a moment may come when the driver has decided to stop, but for whatever reason has a change of mind, such as when the traffic moves off unexpectedly.

At that moment the engine might be ‘committed’ to stopping but is still spinning, so to avoid crunching, one solenoid fires up the starter motor to synchronise its speed with the engine before the second smoothly engages the gear.

Does stop-start damage my engine?

So when it comes to durability and long life, all the bases relating to the starter gear itself should be covered, but the higher number of stop-start cycles lead to increased engine wear unless steps are taken to prevent it.

“A normal car without automatic stop-start can be expected to go through up to 50,000 stop-start events during its lifetime,” says Gerhard Arnold, who is responsible for bearing design at Federal Mogul.

“But with automatic stop-start being activated every time the car comes to a standstill, the figure rises dramatically, perhaps to as many as 500,000 stop-start cycles over the engine’s life.”

Read more: Winter car maintenance tips

That’s a big jump and one that poses major challenges to the durability and life of the engine’s bearings.

A fundamental component of the engine and also one of the heaviest is the crankshaft. It’s supported as it spins by a number of precision ground journals along its length running in ‘plain’ main bearings (no ball bearings or rollers, just smooth metal). These are the main bearings and the effect is greater on the bearing at the back of the engine immediately adjacent to the starter motor.

When the engine is running, the crankshaft and main bearing surfaces don’t actually touch, but are separated by a super-thin film of oil, fed under pressure and pumped around the bearing surfaces by the action of the spinning crankshaft. This process is called ‘hydrodynamic lubrication’ but when the engine stops, the crank settles onto the bearing, the two metal surfaces coming into contact.

How rust helps to prevent wear

When the engine starts, there’s a point before the two surfaces become separated by the oil film called the ‘boundary condition’, where the crankshaft is spinning, but there’s metal-to-metal contact between the bearing surfaces.

This is when most wear takes place. Fitting stop-start means the boundary condition (and metal-to-metal contact) could exist perhaps 500,000 times in the life of the engine instead of 50,000 and normal bearings would wear out long before that.

Read more: How to look after your turbocharged car

Two things prevent that happening. The first is that bearing manufacturers are developing new bearing material with greater self-lubricating properties to resist wear on start-up.

Federal Mogul has developed a new material called Irox with a polymer coating containing particles of iron oxide (rust), which in this microscopic form is surprisingly slippery.

In fact it’s so slippery that the coefficient of friction of an Irox bearing is 50 per cent lower than a conventional aluminium bearing and will easily last the life of an engine equipped with stop-start.

Low friction oils can also assist

The second is improvements in lubricating oils. A modern engine oil contains an additive package comprising a complex chemical cocktail. The technical director of UK company, Millers Oils, Martyn Mann, says the formulation of these packages are critical: “We’ve reduced friction with our oils and improved durability of the oil film and we think that has to be the way forward with stop-start systems.”

Millers began researching low-friction oils in its laboratories back in 2006. “We put a formulation together, tested it on a friction rig and found we could reduce the sliding friction between typical components like pistons and liners by 50 percent,” says Mann.

Read more: What oil should I put in my car?

Generally, this reduces heat, power loss, fuel consumption and wear but Miller’s new triple ester nano-technology, known as Nanodrive, goes further. Tiny nano-particles like microscopic ball bearings exfoliate under high pressure, the polymer ‘flakes’ adhering to the engine surfaces.

So far the technology is available only in Miller’s high-end racing oils, but in relation to stop-start, it could also reduce wear during each re-start when the most wear takes place.

With low-friction bearing and lubrication technology in place the potential threat to engine life by stop-start systems should theoretically be overcome. But the current technology is still relatively new and only time will tell whether every car manufacturer has got it right.

Does stop-start actually save any fuel?

In situations where you’re stationary with the engine idling, such as in heavy traffic or waiting for traffic lights to change, it will save however much fuel would have been used by the engine while the car is stationary. 

How much fuel is saved is often disputed and depends almost entirely upon the type of driving undertaken with the system. Obviously, more stationary time means more fuel saved. There are also occasions when stop-start will not kick in, for example if the engine is cold, the system is less likely to intervene, to allow the engine to warm up fully. It may also not shut off the engine if the battery is below a certain level, if, like Volvo’s system, the driver unfastens their seatbelt, or if you turn the air conditioning on. 

Stop-start is also designed to decrease emissions in urban areas where traffic is more likely to be stationary for longer, so despite the benefit to drivers’ fuel consumption, there are more benefits to the systems than monetary ones. 

Read more: Car tax: everything you need to know about Vehicle Excise Duty

Read more: Buying a car at an auction - six top tips

If you want to find out more about how much fuel your car uses, visit What Car? and try out the True MPG tool.

Our Verdict

Ford Fiesta
Fiestas sold in Europe are ostensibly the same as those sold in America and Asia

The seventh-generation Ford Fiesta is the UK's best selling car, helped by frugal engines, handling verve and a big car feel

Find an Autocar car review

Driven this week

  • Skoda Karoq
    First Drive
    28 April 2017
    The Yeti has morphed into the Karoq for its second generation, and this early drive reveals a solid, practical crossover that could challenge the class best
  • Opel Ampera-e
    First Drive
    27 April 2017
    Opel's second-generation Ampera is smaller than the first, and now purely electric. It's also very capable with a remarkable range
  • Lotus Elise Sprint
    First Drive
    27 April 2017
    The latest incarnation of the Elise may be out of its depth on track, but on the public road it is probably the purest version since the original
  • First Drive
    26 April 2017
    The compromises of adding a plug-in hybrid drivetrain to the 5 Series make the new 530e iPerformance tough to recommend
  • 2017 BMW 440i Coupé
    First Drive
    26 April 2017
    The assumption was that a few minor tweaks to the 2017 BMW 440i Coupé wouldn't make much of a difference. It turns out they do