We look beyond the headline figures to see if it’s possible and what it would mean for the UK public

By 2040, the government’s proposed ‘Road To Zero’ emissions plan will require each new car sold in the UK to have an electric driving range of at least 50 miles.

Cars on sale will be a mix of pure-electric vehicles, and fossil fuel (or other fuel) hybrids, augmented by a plug- in battery and electric drive motor, as Britain’s motoring moves towards having no tailpipe emissions.

The plan hasn’t met wholesale approval. The Society of Motor Manufacturers and Traders said it could not support plans that “do not appreciate how industry, the consumer or the market operate and which are based neither on fact nor substance”.

BP buys EV charge company Chargemaster

Can the industry cope?

The motor industry’s issue is that single-market legislation makes cars more complex and expensive. If, say, the rest of the EU has a similar idea but asks the electric range to be only 30 miles, or 62 miles (100km), or to happen at a slightly later date, and if US or Chinese rules differ again, it adds layers of complexity and bureaucracy to the task of engineering the world’s most complicated consumer product. Car makers will cope, but it might affect the number and type of cars on sale in the UK.

Our Verdict

Tesla Model S 95D

In theory, this all-electric luxury car looks a hit. So is it in practice?

Find an Autocar car review

Driven this week

If the UK government made plans alongside other countries and, yes, while consulting industry associations to establish a clear regional standard, even if a global one is unrealistic, it would mean cars can be both more efficient and cheaper. But the UK is a big car market, so if car makers want to sell cars here – and they will – they’ll get there.

There are 31,177,900 cars on the road in Britain. Some predict there will be fewer cars on the road by 2040, or that we’ll be driving them less, thanks to improved communications technology, but no trend so far supports that. Since 1945, the number of vehicles on Britain’s roads has, according to the Department for Transport, “increased in practically every year”.

The road that charges your electric car

Britain has a growing and ageing population that is travelling more, not less, and using cars and trains to do it. Car journeys are by far the dominant way we travel. Currently, they stand at a record 253.7 billion vehicle miles per year, 12.3% more than 20 years ago.

As the population grows and ages, and if buses continue to become less available, particularly in rural areas, and autonomous technology helps keep the elderly driving longer, there are reasons to think that car journeys will only increase, not decrease. For the purposes of this analysis, though, we’ll assume they’ll stay the same.

What about charging?

If ‘Road To Zero’ is anything, it’s clear in its implication: the intention is that most of these vehicle miles will be travelled using electric power.

There’ll be two ways of giving a car a 50-mile electric range: by on-board charging (using a drive engine, range- extending generator, or fuel cell); or by plugging in your vehicle to a power supply.

No hybrid car today with an electric-only range of less than a few miles can be plugged in, but if you’re fitting a battery big enough to do 50 miles, you might as well put a socket on it.

So the short of it is that every single car sold after 2040 will have a socket – or external charging of some kind – with the hope that you’ll use it most of the time. If it’s an EV, you’ll have to use it all the time.

Today, there are about 16,500 publicly available vehicle charge points, accounting for around only 20% of all vehicle charging, because 70% of electric vehicle charges happen at home and 10% on business premises.

The large number of home chargers means that “there are at least as many dedicated EV charging points in the UK as there are EVs in the UK at this moment in time; the charging market is keeping up with the car market”, according to Chargemaster, an electric vehicle charging company that has manufactured more than 50,000 chargers to date.

Chargemaster believes the number of charge points will continue to rise in line with the number of EVs or part-EVs on the road. And given that early EV adopters are those most likely to have the option to charge at home, the proportion of publicly available chargers will have to increase, for those (the National Grid estimates 43% of the population) who live in terraces, flats or places with no off-street charging. 

Not all of these chargers will be needed by 2040. That’s only the start of the 50-mile compulsion, and the average age of a car in the UK is eight years old. This means that it’ll be 2048, 30 years from now, before, effectively, every car in the country will need charging capacity. There will be exceptions, such as classics that can never be never plugged in and fuel cell vehicles, if many become available.

There could be fewer chargers than cars, or more, but Chargemaster is clear that the trend is for the number of charge points and EVs to match. If that trend does continue – and the necessity for more public charging and the fact that it takes longer, through most chargers, to add range than it actually does to use it – it means that by 2048, Britain will need a network of 31.2 million of them (unless most of our driving is still done by petrol or diesel power, which isn’t the point of the plan).

Assuming there are around 130,000 chargers today, then, that’s an increase of 23,846% for Britain to become fully electrically viable.

A charger built today, though, would likely not have a service life of 30 years, nor will commercial companies start building redundant chargers: it’s estimated that 200,000 EVs and PHEVs will be on the road this year, but that’s only a fraction of the vehicle parc. So there’ll surely need to be an exponential build-up to an immense installation programme in the 2030s, with hundreds of thousands of chargers being installed every week before the electric switchover, and new substations and high-current supplies to parking areas. Can it be done? There are private companies whose fortunes will be made on it.

The energy dilemma:

How much power, though, will this charge network deliver? This is trickier to calculate. Already electric cars are efficient – much more so than internally combusted vehicles. They’ll likely get more efficient again, but there’s the likelihood that vehicle miles and the number of cars will increase, too, so we’ll assume that consumption would be the same as electric cars would need to drive 253.7bn miles today.

Sampling the range and battery size of battery EVs on sale now, each kilowatt hour (kWh) of energy will carry you between three and six miles. If it’s fair to expect that cars will get more efficient (although don’t discount today’s best technology still being that offered on small, cheaper vehicles), we’ll assume that each kWh will take a driver six miles. Therefore 253.7bn vehicle miles will draw 42.1bn kilowatt hours – 42.1 terawatt hours – from the National Grid every year.

That’s 12.4% of additional demand on the UK, which generates 339.3TWh of its own energy every year and imports another 17.5TWh from overseas.

Charging overnight, which is currently a time of low demand, will become a period of sustained demand, if short- range batteries are trickle- charged, and that’s when the grid has surplus power: hence it can be cheaper to use domestic appliances overnight.

High-capacity chargers that can charge bigger batteries in less time, though, are the grid’s bigger concern. Because 43% of car owners who can’t charge at home, and because domestic supplies aren’t robust enough for high-current charging, the grid says that “if we want long-range vehicles that can be charged in minutes, home is not going to be the place to do it. And it certainly won’t be for nearly half of households.”

That’ll mean that daytime charging, perhaps between the beginning and end of the working day, when demand is already as its peak, will be a peak charging time, too, meaning that the UK will have to import even more of its electricity.

Who will foot the bill?

Finally, then, comes the issue of how this is all paid for. The bill for cars, chargers and electricity will be footed by the consumer, but with the concurrent drop in fuel duty – which alone has increased by 24% since 2000 – the Treasury stands to lose, in today’s numbers, a vast proportion of the £28bn it takes in fuel duty. That amounts to 4% of all tax revenues (not even including VAT on fuel) and is far higher than the amount that is spent on roads. Is it not reasonable to assume that, even though it is flagged as an environmental tax, the Treasury would like that back?

If so, the cost, presumably, cannot just go onto electricity, unless you can separate the energy people use to charge a vehicle from the energy they use in cooking or lighting or heating. Which is possible, but not simple, and would be open to abuse.

Alternatively, then, there would need to be a nationwide system of road charging, so you pay by the mile for the journeys you take by car. 

Every road, major and minor - every single mile of the 253bn miles we drive each year - would have to be monitored, logged and charged to the right individual. It could mean you get a tag in your windscreen or it could mean a data-logger in your car, recording your every step.

Either way, that’s why establishing a big enough charge network is critical, because the alternative for half of the population is that they’d be faced with either waiting to charge, or making essential journeys on fossil fuel power. It’s a set-up that penalises the least wealthy drivers. Not only could car choice be reduced and costs increased, but those who can’t charge at home could also have to pay fuel duty plus a per-mile road charge if they can’t find public charging. While the goal of zero tailpipe emissions remains admirable, then, the path towards it is arguably the rockiest in vehicle history.

Read more 

Exclusive: 2040 UK ban on sale of new combustion-engined cars set to be confirmed

Join the debate


2 July 2018

Should read Iis the UK ready for a PART electrified in around 22 years' not quite so alarming now. The answer is YES

typos1 - Just can’t respect opinion

2 July 2018

Model choice may be limited because of differences in specifications between various countries?

At present we drive on the left whilst the majoriy of the world drives on the right. That's one bloody big difference yet we seem to cope. America has different safety regulations - we seem to cope with that. So what difference will a 50mile range in one country and a 30mile range in another have on the availability of cars in different countries?

2 July 2018

Crikey, best article in Motocar for many a year. Well done, that man!

Last time I was this happy with your content was the Citroen Ami road test when its significant roll angle was described as 'acute, but not grave'.

2 July 2018
Ivor Parker wrote:

Crikey, best article in Motocar for many a year. Well done, that man!

Last time I was this happy with your content was the Citroen Ami road test when its significant roll angle was described as 'acute, but not grave'.

Couldn't agree more. Well done! Great to read some theorising, hard facts, and well considered extrapolation.

2 July 2018
The fears of being branded a broken record aside, what happened to the mild hybrid (from the Europe's most ubiquitous and corrupt car maker) that Autocar tested and predictably sang praises of years ago? Do we have to wait for it until after they have sold out all their dirty diesels?

2 July 2018

The point about increased demand during the day will be a good match for the power grid moving towards increased solar power generation. Cars moving to electric will not be in isolation.

2 July 2018

About time someone took a practical view of the problems of getting the equivalent power from fossil fuel migrated to "down electric wires" and I say this in response to a mention of "150Kw" chargers...and I had to ask is this individual chargers or the charging capacity for the entire charging site. This a going to be gigawatt extravaganza before "bambi smoke" emerges from the lovely tail pipes of electric cars.

2 July 2018

"with hundreds of thousands of chargers being installed EVERY WEEK" so a minium of 10,400,000 in just one year. Such a stupid prediction it made the rest of article pointless.

oh he also forgot to mention how much energy will be saved be not refining so much oil. Weak article!

typos1 - Just can’t respect opinion

2 July 2018

Yes I know there is a one off environmental and finacial cost to making and installing them, but Tesla and Nissan now offer a realistic domestic battery storage solution. Admittedly homes without driveways will not be pracical for charging cars but the home itself sould use solar electricity.

The comment about the need for 30, 50 mile or 100 kilometer range is a bit of a red herring, develop a solution to the longest range and the others are obviously covered.

Interestingly BP have very recently bought Chargemaster, so it seems obvious there will be a drastic increase in charger provision as demand for petrol reduces.

Solar panel farms are being installed worldwide and the roof of virtully every building could have them installed.

2 July 2018

I'd go a bit further. I'd make it planning LAW that every new build with a marketing value > £300k and where feasible should have £5k worth of solar panels fitted.

typos1 - Just can’t respect opinion


Add your comment

Log in or register to post comments

Find an Autocar car review

Driven this week